Рецепты блюд. Психология. Коррекция фигуры

Элементарные преобразование системы линейных уравнений. Элементарные преобразования матрицы

Ниже рассматриваются системы линейных уравнений над полем переменными ДООПРЕДЕЛЕНИЕ. Две системы линейных уравнений называются равносильными, если каждое решение любой из этих систем является решением другой системы.

Следующие предложения выражают свойства равносильности, вытекающие из определения равносильности и отмеченных выше свойств следования систем.

ПРЕДЛОЖЕНИЕ 2.2. Две системы линейных уравнений равносильны тогда и только тогда, когда каждая из этих систем является следствием другой системы.

ПРЕДЛОЖЕНИЕ 2.3. Две системы линейных уравнений равносильны тогда и только тогда, когда множество всех решений одной системы совпадает с множеством всех решений другой системы.

ПРЕДЛОЖЕНИЕ 2.4. Две системы линейных уравнений равносильны в том и только в том случае, если равносильны предикаты, определяемые этими системами.

ОПРЕДЕЛЕНИЕ. Элементарными преобразованиями системы линейных уравнений называются следующие преобразования:

(а) умножение обеих частей какого-нибудь уравнения системы на отличный от нуля скаляр;

(Р) прибавление (вычитание) к обеим частям какого-либо уравнения системы соответствующих частей другого уравнения системы, умноженных на скаляр;

Исключение из системы или присоединение к системе линейного уравнения с нулевыми коэффициентами и нулевым свободным членом.

ТЕОРЕМА 2.5. Если одна система линейных уравнений получается из другой системы линейных уравнений в результате цепочки элементарных преобразований, то эти две системы равносильны.

Доказательство. Пусть дана система

Если умножить одно из ее уравнений, например первое на отличный от нуля скаляр X, то получим систему

Каждое решение системы (1) есть также решение системы (2).

Обратно: если - любое решение системы (2),

то, умножив первое равенство на и не изменяя последующих равенств, получим равенства, показывающие, что вектор является решением системы (1). Следовательно, система (2) равносильна исходной системе (1). Так же легко проверить, что однократное применение к системе (1) элементарного преобразования (Р) или приводит к системе, равносильной исходной системе (1). Так как отношение равносильности транзитивно, то многократное применение элементарных преобразований приводит к системе уравнений, равносильной исходной системе (1).

СЛЕДСТВИЕ 2.6. Если к одному из уравнений системы линейных уравнений прибавить линейную комбинацию других уравнений системы, то получится система уравнений, равносильная исходной.

СЛЕДСТВИЕ 2.7. Если исключить из системы линейных уравнений или присоединить к ней уравнение, являющееся линейной комбинацией других уравнений системы, то получится система уравнений, равносильная исходной системе.


Определение 5. Элементарными преобразованиями системы линейных уравнений называются ее следующие преобразования:

1) перестановка любых двух уравнений местами;

2) умножение обеих частей одного уравнения на любое число ;

3) прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число k ;

(при этом все остальные уравнения остаются неизменными).

Нулевым уравнением называем уравнение следующего вида:

Теорема 1. Любая конечная последовательность элементарных преобразований и преобразование вычеркивание нулевого уравнения переводит одну систему линейных уравнений в равносильную ей другую систему линейных уравнений.

Доказательство. В силу свойства 4 предыдущего пункта достаточно доказать теорему для каждого преобразования отдельно.

1. При перестановке уравнений в системе местами сами уравнения неизменяются, поэтому по определению полученная система равносильная первоначальной.

2. В силу первой части доказательства достаточно доказать утверждение для первого уравнения. Умножим первое уравнение системы (1) на число , получим систему

(2)

Пусть  системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (2) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеет место верное числовое равенство:

Умножая его на число K , получим верное числовое равенство:

Т. о. устанавливаем, что системы (2).

Обратно, если решение системы (2), то числа удовлетворяют всем уравнениям системы (2). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (2), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (2), то справедливо числовое равенство (4). Разделив обе его части на число ,получим числовое равенство (3) и доказываем, что решение системы (1).

Отсюда по определению 4 система (1) равносильна системе (2).

3. В силу первой части доказательства достаточно доказать утверждение для первого и второго уравнения системы. Прибавим к обеим частям первому уравнению системы соответствующие части второго умноженные на число K , получим систему

(5)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (5) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеют место верные числовые равенства:

Прибавляя почленно к первому равенству второе, умноженное на число K получим верное числовое равенство.

Две системы линейных уравнений от одного набора x 1 ,..., x n неизвестных и соответственно из m и p уравнений

Называются эквивалентными, если их множества решений и совпадают (т. е. подмножества и в K n совпадают, ). Это означает, что: либо они одновременно являются пустыми подмножествами (т. е. обе системы (I) и (II) несовместны), либо они одновременно непустые , и (т. е. каждое решение системы I является решением системы II и каждое решение системы II является решением системы I).

Пример 3.2.1 .

Метод Гаусса

План алгоритма, предложенного Гауссом, был весьма прост:

  1. применять к системе линейных уравнений последовательно преобразования, не меняющие множество решений (таким образом мы сохраняем множество решений исходной системы), и перейти к эквивалентной системе, имеющей "простой вид" (так называемую ступенчатую форму);
  2. для "простого вида" системы (со ступенчатой матрицей) описать множество решений, которое совпадает с множеством решений исходной системы.

Отметим, что близкий метод "фан-чен" был известен уже в древнекитайской математике.

Элементарные преобразования систем линейных уравнений (строк матриц)

Определение 3.4.1 (элементарное преобразование 1-го типа) . При к i -му уравнению системы прибавляется k -е уравнение, умноженное на число (обозначение: (i)"=(i)+c(k) ; т. е. лишь одно i -е уравнение (i) заменяется на новое уравнение (i)"=(i)+c(k) ). Новое i -е уравнение имеет вид (a i1 +ca k1)x 1 +...+(a in +ca kn)x n =b i +cb k , или, кратко,

Т. е. в новом i -м уравнении a ij "=a ij +ca kj , b i "=b i +cb k .

Определение 3.4.2 (элементарное преобразование 2-го типа) . При i -е и k -е уравнение меняются местами, остальные уравнения не изменяются (обозначение: (i)"=(k) , (k)"=(i) ; для коэффициентов это означает следующее: для j=1,...,n

Замечание 3.4.3 . Для удобства в конкретных вычислениях можно применять элементарное преобразование 3-го типа: i -е уравнение умножается на ненулевое число , (i)"=c(i) .

Предложение 3.4.4 . Если от системы I мы перешли к системе II при помощи конечного числа элементарных преобразований 1-го и 2-го типа, то от системы II можно вернуться к системе I также элементарными преобразованиями 1-го и 2-го типа.

Доказательство.

Замечание 3.4.5 . Утверждение верно и с включением в число элементарных преобразований элементарного преобразования 3-го типа. Если и (i)"=c(i) , то и (i)=c -1 (i)" .

Теорема 3.4.6 .После последовательного применения конечного числа элементарных преобразований 1-го или 2-го типа к системе линейных уравнений получается система линейных уравнений, эквивалентная первоначальной.

Доказательство. Заметим, что достаточно рассмотреть случай перехода от системы I к системе II при помощи одного элементарного преобразования и доказать для множеств решений включение (поскольку в силу доказанного предложения от системы II можно вернуться к системе I и поэтому будем иметь включение , т. е. будет доказано равенство ).

К элементарным преобразованиям относятся:

1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.

2)Перестановка уравнений местами.

3)Удаление из системы уравнений, являющихся тождествами для всех х.

ТЕОРЕМА КРОНЕКЕРА – КАПЕЛЛИ

(условие совместности системы)

(Леопольд Кронекер (1823-1891) немецкий математик)

Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

Очевидно, что система (1) может быть записана в виде:

x 1 + x 2 + … + x n

Доказательство.

1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход А®А * не изменяют ранга.

2) Если RgA = RgA * , то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.

Пример. Определить совместность системы линейных уравнений:

~ . RgA = 2.

A* = RgA* = 3.

Система несовместна.

Пример. Определить совместность системы линейных уравнений.

А = ; = 2 + 12 = 14 ¹ 0; RgA = 2;

A* =

RgA* = 2.

Система совместна. Решения: x 1 = 1; x 2 =1/2.

2.6 МЕТОД ГАУССА

(Карл Фридрих Гаусс (1777-1855) немецкий математик)

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

Разделим обе части 1–го уравнения на a 11 ¹ 0, затем:

1) умножим на а 21 и вычтем из второго уравнения

2) умножим на а 31 и вычтем из третьего уравнения

, где d 1 j = a 1 j /a 11 , j = 2, 3, …, n+1.

d ij = a ij – a i1 d 1j i = 2, 3, … , n; j = 2, 3, … , n+1.

Пример. Решить систему линейных уравнений методом Гаусса.

, откуда получаем: x 3 = 2; x 2 = 5; x 1 = 1.

Пример. Решить систему методом Гаусса.

Составим расширенную матрицу системы.

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: z = 3; y = 2; x = 1.

Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.

Для самостоятельного решения:

Ответ: {1, 2, 3, 4}.

ТЕМА 3. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.

Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

Определение. Векторы называются коллинеарными , если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

Определение. Векторы называются компланарными , если существует плоскость, которой они параллельны.

Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

Определение. Векторы называются равными , если они коллинеарны, одинаково направлены и имеют одинаковые модули.

Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

Определение. Линейными операциями над векторами называется сложение и умножение на число.

Суммой векторов является вектор -

Произведение - , при этом коллинеарен .

Вектор сонаправлен с вектором ( ­­ ), если a > 0.

Вектор противоположно направлен с вектором ( ­¯ ), если a < 0.

СВОЙСТВА ВЕКТОРОВ

1) + = + - коммутативность.

2) + ( + ) = ( + )+

5) (a×b) = a(b ) – ассоциативность

6) (a+b) = a + b - дистрибутивность

7) a( + ) = a + a

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3)Базисом на прямой называется любой ненулевой вектор.

К элементарным преобразованиям матрицы относятся:

1. Изменение порядка строк (столбцов).

2. Отбрасывание нулевых строк (столбцов).

3. Умножение элементов любой строки (столбца) на одно число.

4. Прибавление к элементам любой строки (столбца) элементов другой строки (столбца), умноженных на одно число.

Системы линейных алгебраических уравнений слу (Основные понятия и определения).

1. Системой m линейных уравнений с n неизвестными называется система уравнений вида:

2. Решением системы уравнений (1) называется совокупность чисел x 1 , x 2 , … , x n , обращающая каждое уравнение системы в тождество.

3. Система уравнений (1) называется совместной , если она имеет хотя бы одно решение; если система не имеет решений, она называется несовместной .

4. Система уравнений (1) называется определенной , если она имеет только одно решение, и неопределенной , если у нее более одного решения.

5. В результате элементарных преобразований система (1) преобразуется к равносильной ей системе (т.е. имеющей то же множество решений).

К элементарным преобразованиям систем линейных уравнений относятся:

1. Отбрасывание нулевых строк.

2. Изменение порядка строк.

3. Прибавление к элементам любой строки элементов другой строки, умноженных на одно число.

Методы решения систем линейных уравнений.

1) Метод обратной матрицы (матричный метод) решения систем n линейных уравнений с n неизвестными.

Системой n линейных уравнений с n неизвестными называется система уравнений вида:

Запишем систему (2) в матричном виде, для этого введем обозначения.

Матрица коэффициентов перед переменными:

X = ‒ матрица переменных.

В = ‒ матрица свободных членов.

Тогда система (2) примет вид:

A ×X = B ‒ матричное уравнение.

Решив уравнение, получим:

X = A -1 ×B

Пример:

; ;

1) │А│= 15 + 8 ‒18 ‒9 ‒12 + 20 = 4  0 матрицаА -1 существует.

3)

à =

4) А -1 = × Ã =;

Х = А -1 × B

Ответ:

2) Правило Крамера решения систем n – линейных уравнений с n – неизвестными.

Рассмотрим систему 2 ‒ х линейных уравнений с 2 ‒ мя неизвестными:

Решим эту систему методом подстановки:

Из первого уравнения следует:

Подставив во второе уравнение, получим:

Подставляем значение в формулу для, получим:

Определитель Δ - определитель матрицы системы;

Δ x 1 - определитель переменной x 1 ;

Δ x 2 - определитель переменной x 2 ;

Формулы:

x 1 =;x 2 =;…,x n = ;Δ  0;

‒ называются формулами Крамера.

При нахождении определителей неизвестных х 1 , х 2 ,…, х n заменяется столбец коэффициентов при той переменной, определитель которой находят, на столбец свободных членов.

Пример: Решить систему уравнений методом Крамера

Решение:

Составим и вычислим сначала главный определитель этой системы:

Так как Δ ≠ 0, то система имеет единственное решение, которое можно найти по правилу Крамера:

где Δ 1 , Δ 2 , Δ 3 получаются из определителя Δ путем замены 1‒ го, 2 ‒ го или 3 ‒ го столбца, соответственно, на столбец свободных членов.

Таким образом:

Метод Гаусса решения систем линейных уравнений.

Рассмотрим систему:

Расширенной матрицей системы (1) называется матрица вида:

Метод Гаусса – это метод последовательного исключения неизвестных из уравнений системы, начиная со второго уравнения по m – тое уравнение.

При этом путем элементарных преобразований матрица системы приводится к треугольной (если m = n и определитель системы ≠ 0) или ступенчатой (если m < n ) форме.

Затем, начиная с последнего по номеру уравнения, находятся все неизвестные.

Алгоритм метода Гаусса:

1) Составить расширенную матрицу системы, включающую столбец свободных членов.

2) Если а 11  0, то первую строку делим на а 11 и умножаем на (– a 21) и прибавляем вторую строку. Аналогично дойти до m –той строки:

I стр. делим на а 11 и умножаем на (– а m 1) и прибавляем m – тую стр.

При этом из уравнений, начиная со второго по m – тое, исключится переменная x 1 .

3) На 3 ‒ м шаге вторая строка используется для аналогичных элементарных преобразований строк с 3 ‒ й по m – тую. При этом исключится переменная x 2 , начиная с 3 ‒ й строки по m – тую, и т. д.

В результате этих преобразований система приведется к треугольной или ступенчатой форме (в случае треугольной формы под главной диагональю нули).

Приведение системы к треугольной или ступенчатой форме называется прямым ходом метода Гаусса , а нахождение неизвестных из полученной системы называется обратным ходом .

Пример:

Прямой ход. Приведём расширенную матрицу системы

с помощью элементарных преобразований к ступенчатому виду. Переставим первую и вторую строки матрицыA b , получим матрицу:

Сложим вторую строку полученной матрицы с первой, умноженной на (‒2), а её третью строку – с первой строкой, умноженной на (‒7). Получим матрицу

К третьей строке полученной матрицы прибавим вторую строку, умноженную на (‒3), в результате чего получим ступенчатую матрицу

Таким образом, мы привели данную систему уравнений к ступенчатому виду:

,

Обратный ход. Начиная с последнего уравнения полученной ступенчатой системы уравнений, последовательно найдём значения неизвестных: