Рецепты блюд. Психология. Коррекция фигуры

Нервный импульс и принцип его передачи. Распространение нервных импульсов Импульса нервные клетки окружены

Нервный импульс - это движущаяся волна изменений в состоянии мембраны. Она включает в себя структурные изменения (открытие и закрытие мембранных ионных каналов), химические (изменяющиеся трансмембранные потоки ионов) и электрические (изменения электрического потенциала мембраны: деполяризацию, позитивную поляризацию и реполяризацию). © 2012-2019 Сазонов В.Ф..

Можно сказать короче:

"Нервный импульс - это волна изменений, движущаяся по мембране нейрона". © 2012-2019 Сазонов В.Ф..

Но в физиологической литературе в качестве синонима для нервного импульса принято использовать также и термин "потенциал действия". Хотя потенциал действия - это только электрический компонент нервного импульса.

Потенциал действия – это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

Потенциал действия - это электрическая характеристика (электрическая составляющая) нервного импульса.

Нервный импульс - это сложный структурно-электро-химический процесс, распространяющийся по мембране нейрона в виде бегущей волны изменений.

Потенциал действия - это только электрический компонент нервного импульса, характеризующий изменения электрического заряда (потенциала) на локальном участке мембраны во время прохождения через него нервного импульса (от -70 до +30 мВ и обратно). (Кликните на изображение слева, чтобы увидеть анимацию.)

Сравните два приведённых выше рисунка (покликайте по ним) и, как говорится, почувствуйте разницу!

Где рождаются нервные импульсы?

Как ни странно, не все студенты, изучившие физиологию возбуждения, могут ответить на этот вопрос. ((

Хотя ответ не сложен. Нервные импульсы рождаются на нейронах всего в нескольких местах:

1) аксонный холмик (это переход тела нейрона в аксон),

2) рецепторное окончание дендрита,

3) первый перехват Ранвье на дендрите (триггерная зона дендрита),

4) постсинаптическая мембрана возбуждающего синапса.

Места возникновения нервных импульсов:

1. Аксонный холмик - главный породитель нервных импульсов.

Аксонный холмик - это самое начало аксона, там где он начинается на теле нейрона. Именно аксонный холмик является главным породителем (генератором) нервных импульсов на нейроне. Во всех остальных местах вероятность рождения нервного импульса намного меньше. Дело в том, что у мембраны аксонного холмика повышена чувствительность к возбуждению и понижен критический уровень деполяризации (КУД) по сравнению с остальными участками мембраны. Поэтому, когда на мембране нейрона начинают суммироваться многочисленные возбуждающие постсинаптические потенциалы (ВПСП), которые возникают в самых разных местах на постсинаптических мембранах всех его синаптических контактов, то раньше всего КУД достигается именно на аксонном холмике. Там-то эта сверхпороговая для холмика деполяризация и открывает потенциал-чувствительные натриевые каналы, в которые входит поток ионов натрия, порождающий потенциал действия и нервный импульс.

Итак, аксонный холмик является интегративной зоной на мембране, он интегрирует все возникающие на нейроне локальные потенциалы (возбуждающие и тормозные) - и первый срабатывает на достижение КУД, порождая нервный импульс.

Важно также учесть следующий факт. От аксонного холмика нервный импульс разбегается по всей мембране своего нейрона: как по аксону к пресинаптическоим окончаниям, так и по дендритам к постсинаптическим "начинаниям". Все локальные потенциалы при этом снимаются с мембраны нейрона и со всех его синапсов, т.к. они "перебиваются" потенциалом действия от пробегающего по всей мембране нервного импульса.

2. Рецепторное окончание чувствительного (афферентного) нейрона.

Если нейрон имеет рецепторное окончание, то на него может воздействовать адекватный раздражитель и порождать на этом окончании сначала генераторный потенциал, а затем и нервный импульс. Когда генераторный потенциал достигает КУД, то на этом окончании открываются потенциал-зависимые натриевые ионные каналы и рождается потенциал действия и нервный импульс. Нервный импульс бежит по дендриту к телу нейрона, а затем по его аксону к пресинаптическим окончаниям для передачи возбуждения на следующий нейрон. Так работают, к примеру, болевые рецепторы (ноцицепторы), являющиеся дендритными окончаниями болевых нейронов. Нервные импульсы в болевых нейронах вознимают именно на рецепторных окончаниях дендритов.

3. Первый перехват Ранвье на дендрите (триггерная зона дендрита).

Локальные возбуждающие постсинаптические потенциалы (ВПСП) на окончаниях дендрита, которые формируются в ответ на возбуждения, приходящие к дендриту через синапсы, суммируются на первом перехвате Ранвье этого дендрита, если он, конечно, миелинизирован. Там находится участок мембраны с повышенной чувствительностью к возбуждению (пониженным порогом), поэтому именно в этом участке легче всего преодолевается критический уровень деполяризации (КУД), после чего открываются потенциал-управляемые ионные каналы для натрия - и возникает потенциал действия (нервный импульс).

4. Постсинаптическая мембрана возбуждающего синапса.

В редких случаях ВПСП на возбуждающем синапсе может быть настолько силён, что прямо там же достигает КУД и порождает нервный импульс. Но чаще это бывает возможно только в результате суммации нескольких ВПСП: или с нескольких соседних синапсов, сработавших одновременно (пространственная суммация), или за счёт того, что на данный синапс пришло несколько импульсов подряд (временная суммация).

Видео: Проведение нервного импульса по нервному волокну

Потенциал действия как нервный импульс

Ниже размещён материал, взятый из учебно-методического пособия автора данного сайта, на который вполне можно ссылаться в своём списке литературы:

Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

Все процессы мембранных изменений, происходящих в ходе распространяющегося возбуждения, достаточно хорошо изучены и описаны в научной и учебной литературе. Но не всегда это описание легко понять, поскольку в данном процессе задействовано слишком много компонентов (с точки зрения обычного студента, а не вундеркинда, конечно).

Для облегчения понимания мы предлагаем рассматривать единый электрохимический процесс распространяющегося динамичного возбуждения с трех сторон, на трех уровнях:

    Электрические явления – развитие потенциала действия.

    Химические явления – движение ионных потоков.

    Структурные явления – поведение ионных каналов.

Три стороны процесса распространяющегося возбуждения

1. Потенциал действия (ПД)

Потенциал действия – это скачкообразное изменение постоянного мембранного потенциала с отрицательной поляризации на положительную и обратно.

Обычно мембранный потенциал в нейронах ЦНС изменяется от –70 мВ до +30 мВ, а затем вновь возвращается к исходному состоянию, т.е. к –70 мВ. Как видим, понятие потенциала действия характеризуется через электрические явления на мембране.

На электрическом уровне изменения начинаются как смена поляризованного состояния мембраны на деполяризацию. Сначала деполяризация идет в виде локального возбуждающего потенциала. Вплоть до критического уровня деполяризации (примерно –50 мВ) это относительно простое линейное уменьшение электроотрицательности, пропорциональное силе воздействующего раздражителя. А вот потом начинается более крутая самоусиливающаяся деполяризация, она развивается не с постоянной скоростью, а с ускорением . Говоря образно, деполяризация так разгоняется, что перескакивает через нулевую отметку, не заметив этого, и даже переходит в положительную поляризацию. После достижения пика (обычно +30 мВ) начинается обратный процесс – реполяризация , т.е. восстановление отрицательной поляризации мембраны.

Кратко опишем электрические явления во время течения потенциала действия:

Восходящая ветвь графика:

    потенциал покоя – исходное обычное поляризованное электроотрицательное состояние мембраны (–70 мВ);

    нарастающий локальный потенциал – пропорциональная раздражителю деполяризация;

    критический уровень деполяризации (–50 мВ) – резкое ускорение деполяризации (за счет самораскрытия натриевых каналов), с этой точки начинается спайк – высокоамплитудная часть потенциала действия;

    самоусиливающаяся круто нарастающая деполяризация;

    переход нулевой отметки (0 мВ) – смена полярности мембраны;

    «овершут» – положительная поляризация (инверсия, или реверсия, заряда мембраны);

    пик (+30 мВ) – вершина процесса изменения полярности мембраны, вершина потенциала действия.

Нисходящая ветвь графика:

    реполяризация – восстановление прежней электроотрицательности мембраны;

    переход нулевой отметки (0 мВ) – обратная смена полярности мембраны на прежнюю, отрицательную;

    переход критического уровня деполяризации (–50 мВ) – прекращение фазы относительной рефрактерности (невозбудимости) и возврат возбудимости;

    следовые процессы (следовая деполяризация или следовая гиперполяризация);

    восстановление потенциала покоя – норма (–70 мВ).

Итак, сначала – деполяризация, затем – реполяризация. Сначала – утрата электроотрицательности, затем – восстановление электроотрицательности.

2. Ионные потоки

Образно можно сказать, что заряженные ионы – это и есть создатели электрических потенциалов в нервных клетках. Для многих людей звучит странно утверждение, что вода не проводит электрический ток. Но на самом деле это так. Сама по себе вода является диэлектриком, а не проводником. В воде электрический ток обеспечивают не электроны, как в металлических проводах, а заряженные ионы: положительные катионы и отрицательные анионы. В живых клетках основную «электрическую работу» выполняют катионы, так как они более подвижны. Электрические токи в клетках – это потоки ионов.

Итак, важно осознать, что все электрические токи, которые идут через мембрану, являются ионными потоками . Привычного нам из физики тока в виде потока электронов в клетках, как в водных системах, просто нет. Ссылки на потоки электронов будут ошибкой.

На химическом уровне мы, описывая распространяющееся возбуждение, должны рассмотреть, как изменяются характеристики ионных потоков, идущих через мембрану. Главное в этом процессе то, что при деполяризации резко усиливается поток ионов натрия внутрь клетки, а затем он внезапно прекращается на спайке потенциала действия. Входящий поток натрия как раз и вызывает деполяризацию, так как ионы натрия приносят с собой положительные заряды в клетку (чем и снижают электроотрицательность). Затем, после спайка, значительно нарастает выходящий наружу поток ионов калия, что вызывает реполяризацию. Ведь калий, как мы неоднократно говорили, выносит с собой из клетки положительные заряды. Отрицательные заряды остаются внутри клетки в большинстве, и за счет этого усиливается электроотрицательность. Это и есть восстановление поляризации за счет выходящего потока ионов калия. Заметим, что выходящий поток ионов калия возникает практически одновременно с появлением натриевого потока, но нарастает медленно и длится в 10 раз дольше. Несмотря на продолжительность калиевого потока самих ионов расходуется немного – всего одна миллионная доля от запаса калия в клетке (0,000001 часть).

Подведем итоги. Восходящая ветвь графика потенциала действия образуется за счет входа в клетку ионов натрия, а нисходящая – за счет выхода из клетки ионов калия.

3. Ионные каналы

Все три стороны процесса возбуждения – электрическая, химическая и структурная – необходимы для понимания его сущности. Но все-таки все начинается с работы ионных каналов. Именно состояние ионных каналов предопределяет поведение ионов, а поведение ионов в свою очередь сопровождается электрическими явлениями. Начинают процесс возбуждения натриевые каналы .

На молекулярно-структурном уровне происходит открытие мембранных натриевых каналов. Сначала этот процесс идет пропорционально силе внешнего воздействия, а затем становится просто «неудержимым» и массовым. Открытие каналов обеспечивает вход натрия в клетку и вызывает деполяризацию. Затем, примерно через 2-5 миллисекунд, происходит их автоматическое закрытие . Это закрытие каналов резко обрывает движение ионов натрия внутрь клетки, и, следовательно, обрывает нарастание электрического потенциала. Рост потенциала прекращается, и на графике мы видим спайк. Это вершина кривой на графике, дальше процесс пойдет уже в обратном направлении. Конечно, очень интересно разобраться в том, что натриевые каналы имеют двое ворот, и открываются они активационными воротами, а закрываются инактивационными, но это следует обсуждать ранее, в теме «Возбуждение». Мы на этом останавливаться не будем.

Параллельно в открытием натриевых каналов с небольшим отставанием во времени идет нарастающее открытие калиевых каналов. Они медлительные по сравнению с натриевыми. Открытие дополнительных калиевых каналов усиливает выход положительных ионов калия из клетки. Выход калия противодействует «натриевой» деполяризации и вызывает восстановление полярности (восстановление электроотрицательности). Но натриевые каналы опережают калиевые, они срабатывают примерно в 10 раз быстрее. Поэтому входящий поток положительных ионов натрия в клетку опережает компенсирующий выход ионов калия. И поэтому деполяризация развивается опережающими темпами по сравнению с противодействующей ей поляризацией, вызванной утечкой ионов калия. Вот почему, пока натриевые каналы не закроются, восстановление поляризации не начнется.

Пожар как метафора распространяющегося возбуждения

Для того чтобы перейти к пониманию смысла динамичного процесса возбуждения, т.е. к пониманию его распространения вдоль мембраны, надо представить себе, что описанные нами выше процессы захватывают сначала ближайшие, а затем все новые, все более и более отдаленные участки мембраны, пока не пробегут по всей мембране полностью. Если вы видели «живую волну», которую устраивают болельщики на стадионе за счет вставания и приседания, то вам легко будет представить себе мембранную волну возбуждения, которая образуется за счет последовательного протекания в соседних участках трансмембранных ионных токов.

Когда мы искали образный пример, аналогию или метафору, которая может наглядно передать смысл распространяющегося возбуждения, то остановились на образе пожара. Действительно, распространяющееся возбуждение похоже на лесной пожар, когда горящие деревья остаются на месте, а фронт огня распространяется и уходит все дальше и дальше во все стороны от очага возгорания.

Как же в этой метафоре будет выглядеть явление торможения?

Ответ очевиден – торможение будет выглядеть как тушение пожара, как уменьшение горения и затухание огня. Но если огонь распространяется сам по себе, то тушение требует усилий. Из потушенного участка процесс тушения сам по себе не пойдет во все стороны.

Существует три варианта борьбы с пожаром: (1) либо надо ждать, когда все сгорит и огонь истощит все горючие запасы, (2) либо надо поливать водой горящие участки, чтобы они погасли, (3) либо надо поливать заранее ближайшие нетронутые огнем участки, чтобы они не загорелись.

Можно ли «погасить» волну распространяющегося возбуждения?

Вряд ли нервная клетка способна «погасить» этот начавшийся «пожар» возбуждения. Поэтому первый способ подходит только для искусственного вмешательства в работу нейронов (например, в лечебных целях). Но вот «залить водичкой» некоторые участки и поставить блок распространению возбуждения, оказывается, вполне возможно.

© Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

АВТОВОЛНЫ В АКТИВНО-ВОЗБУДИМЫХ СРЕДАХ (АВС)

При распространении волны в активно-возбудимых средах не происходит переноса энергии. Энергия не переносится, а освобождается, когда до участка АВС доходит возбуждение. Можно провести аналогию с серией взрывов зарядов, заложенных на некотором расстоянии друг от друга (например, при тушении лесных пожаров, строительстве, мелиоративных работах), когда взрыв одного заряда вызывает взрыв рядом расположенного и так далее. Лесной пожар также является примером распространения волны в активно- возбудимой среде. Пламя распространяется по области с распределенными запасами энергии - деревья, валежник, сухой мох.

Основные свойства волн, распространяющихся в активно-возбудимых средах (АВС)

Волна возбуждения распространяется в АВС без затухания; прохождение волны возбуждения связано с рефрактерностью - невозбудимостью среды в течение некоторого промежутка времени (периода рефрактерности).

Нервный импульс - электрический импульс или нет?

Имеются разные точки зрения: химическая и электрическая. Результаты гууглевания.


Дмитрий. Почему нервы не провода, а нервный импульс не ток. (4.09.2013)

ФИЗИЧЕСКАЯ ЭНЦИКЛОПЕДИЯ:

НЕРВНЫЙ ИМПУЛЬС - волна возбуждения , к-рая распространяется по нервному волокну и служит для передачи информации от периферич. рецепторных (чувствительных) окончаний к нервным центрам, внутри центр. нервной системы и от неё к исполнительным аппаратам - мышцам и железам. Прохождение Н. и. сопровождается переходными электрич. процессами, к-рые можно зарегистрировать как внеклеточными, так и внутриклеточными электродами... Вдоль нервного волокна Нервный импусьс распространяется в виде волны электрич. потенциала. В синапсе происходит смена механизма распространения. Когда Н. и. достигает пресинаптич. окончания, в синаптич. щель выделяется активное хим. вещество - м е д и а т о р. Медиатор диффундирует через синаптич. щель и меняет проницаемость постсинаптич. мембраны, в результате чего на ней возникает потенциал , вновь генерирующий распространяющийся импульс . Так действует хим. синапс. Встречается также электрич. синапс, когда след . нейрон возбуждается электрически...Состояние покоя нервного волокна... стационарно благодаря действию ионных насосов , причём мембранный потенциал в условиях разомкнутой цепи определяется из равенства нулю полного электрич. тока...
Процесс нервного возбуждения развивается следующим образом (см. также Биофизика). Если пропустить через аксон слабый импульс тока, приводящий к деполяризации мембраны, то после снятия внеш. воздействия потенциал монотонно возвращается к исходному уровню. В этих условиях аксон ведёт себя как пассивная электрич. цепь, состоящая из конденсатора и пост. сопротивления.
Если импульс тока превышает нек-рую пороговую величину, потенциал продолжает изменяться и после выключения возмущения...

Мембрана нервного волокна представляет собой нелинейный ионный проводник , свойства к-рого существенно зависят от электрич. поля.

ИОННЫЕ НАСОСЫ молекулярные структуры, встроенные в биол. мембраны и осуществляющие перенос ионов в сторону более высокого электрохим. потенциала

СЕМЁНОВ С.Н. О ФОНОННОЙ ПРИРОДЕ НЕРВНОГО ИМПУЛЬСА С ПОЗИЦИЙ ДИНАМИКИ ЭВОЛЮЦИИ . (29.05.2013)
Семёнов С.Н. Фонон – квант биологической (клеточной) мембраны.

МОЛЕКУЛЯРНО-МЕХАНИЧЕСКАЯ МОДЕЛЬ СТРОЕНИЯ И ФУНКЦИОНИРОВАНИЯ БИОЛОГИЧЕСКИХ МЕМБРАН
ВВЕДЕНИЕ В КВАНТОВУЮ ФОНОННУЮ БИОЛОГИЮ МЕМБРАН.
С.Н. Семёнов , Дата публикации: 8 сентября 2003
Контакт с автором: [email protected]

Николаев Л.А. ′Металлы в живых организмах′ - Москва: Просвещение, 1986 - с.127
В научно-популярной форме автор рассказывает о роли металлов в биохимических процессах, протекающих в живых организмах. Книга будет способствовать расширению кругозора учащихся.
В распространении по нерву электрических импульсов принимают участие оба иона (натрия и калия).

Электрическая природа нервных импульсов и возбудимости нервной клетки.
Гальвани еще накануне XIX века экспериментально доказал, что между электричеством и функционированием мышц и нервов существует определенная связь.
Установление электрической природы возбуждения скелетной мышцы привело к практическому применению этого свойства в медицине. Во многом этому способствовал голландский физиолог Виллерн Эйнтховен. В 1903 году он создал особо чувствительный гальванометр, настолько чувствительный, что с его помощью можно было фиксировать изменения электрического потенциала сокращающейся сердечной мышцы. В течение трех последующих лет Эйнтховен записывал изменения потенциала сердца при его сокращении (эта запись называется электрокардиограммой) и сопоставлял особенности пиков и впадин с различными типами сердечных патологий.
Электрическую природу нервного импульса обнаружить было труднее, поначалу считали, что возникновение электрического тока и распространение его по нервному волокну обусловлены химическими изменениями в нервной клетке. Поводом для такого чисто спекулятивного суждения послужили результаты экспериментов немецкого физиолога XIX века Эмила Дю Буа-Раймона, который с помощью высокочувствительного гальванометра смог зарегистрировать в нерве при его стимуляции слабенький электрический ток.
По мере развития техники исследования электрической природы нервного импульса становились все более изящными. Помещая крошечные электроды (микроэлектроды) на различные участки нервного волокна, исследователи с помощью осциллоскопа научились регистрировать не только величину возникающего при возбуждении нерва электрического потенциала, но и его продолжительность, скорость распространения и прочие электрофизиологические параметры. За работы, проделанные в этой области, американские физиологи Джозеф Эрлангер и Герберт Спенсер Гессер в 1944 году были удостоены звания лауреатов Нобелевской премии в области медицины и физиологии.
Если на нервную клетку подавать электрические импульсы возрастающей силы, то вначале, пока сила импульса не достигнет определенной величины, клетка на эти импульсы реагировать не будет. Но как только сила импульса достигнет определенного значения, клетка внезапно возбудится и тут же возбуждение начнет распространяться по нервному волокну. Нервная клетка имеет определенный порог возбуждения, и на любой стимул, превышающий этот порог, она отвечает возбуждением только определенной интенсивности. Таким образом, возбудимость нервной клетки подчиняется закону «все или ничего», и во всех нервных клетках организма природа возбуждения одна и та же.

http://med-000.ru/kak-funkcioniruet-nerv/elektrich...

Ионная теория нервных импульсов, роль ионов калия и натрия в нервном возбуждении.

Возбуждение самой нервной клетки обусловлено движением ионов через клеточную мембрану. Обычно внутри клетки содержится избыток ионов калия, тогда как снаружи ее обнаруживается избыток ионов натрия. В покое клетка не выпускает из себя ионы калия и не впускает в себя ионы натрия, не давая сравняться концентрациям этих ионов по обе стороны мембраны. Градиент ионов клетка поддерживает при помощи работы натриевого насоса, который выкачивает ионы натрия наружу по мере их поступления внутрь клетки через мембрану. Различная концентрация ионов натрия по обе стороны клеточной мембраны создает на ней разность потенциалов величиной примерно в 1/10 вольта. При стимуляции клетки разность потенциалов падает, это и означает возбуждение клетки. Клетка не может реагировать на следующий стимул, пока разность потенциалов между наружной и внутренней сторонами мембраны не восстановится вновь. Этот период «отдыха» занимает несколько тысячных долей секунды, и называется он рефрактерным периодом.
После возбуждения клетки импульс начинает распространяться по нервному волокну. Распространение импульса - это серия последовательных возбуждений фрагментов нервного волокна, когда возбуждение предыдущего фрагмента вызывает возбуждение следующего, и так до самого окончания волокна. Распространение импульса происходит только в одном направлении, поскольку предыдущий фрагмент, который только что был возбужден, повторно возбудиться сразу же не может, так как находится в стадии «отдыха».
То, что возникновение и распространение нервного импульса обусловлено изменением ионной проницаемости мембраны нервной клетки, впервые доказали британские нейрофизиологи Алан Ллойд Ходжкин и Эндрю Филдинг Хаксли, а также австралийский исследователь Джон Кэрью Икклес.

Проведение нервных импульсов по нервным волокнам и через синапсы. Высоковольтный потенциал, возникающий при возбуждении рецептора в нервном волокне, в 5-10 раз больше порога раздражения рецептора. Проведение волны возбуждения по нервному волокну обеспечивается тем, что каждый последующий его участок раздражается высоковольтным потенциалом предыдущего участка. В мякотных нервных волокнах этот потенциал распространяется не непрерывно, а скачкообразно; он перескакивает через один или даже несколько перехватов Ранвье, в которых усиливается. Продолжительность проведения возбуждения между двумя соседними перехватами Ранвье равняется 5-10% длительности высоковольтного потенциала.


Проведение нервного импульса по нервному волокну происходит только при условии его анатомической непрерывности и нормального физиологического его состояния. Нарушение физиологических свойств нервного волокна сильным охлаждением или отравлением ядами и наркотиками прекращает проведение нервного импульса даже при анатомической его непрерывности.

Нервные импульсы проводятся изолированно по отдельным двигательным и чувствительным нервным волокнам, которые входят в состав смешанного нерва, что зависит от изолирующих свойств покрывающих их миелиновых оболочек. В безмякотных нервных волокнах биоток распространяется непрерывно вдоль волокна и благодаря соединительнотканой оболочке не переходит с одного волокна на другое. Нервный импульс может распространяться по нервному волокну в двух направлениях: центростремительном и центробежном. Следовательно, существуют три правила проведения нервного импульса в нервных волокнах: 1) анатомической непрерывности и физиологической целости, 2) изолированного проведения и 3) двустороннего проведения.

Через 2-3 дня после отделения нервных волокон от тела нейрона они начинают перерождаться, или дегенерировать, и проведение нервных импульсов прекращается. Нервные волокна и миелин разрушаются и сохраняется только соединительнотканая оболочка. Если соединить перерезанные концы нервных волокон, или нерва, то после дегенерации тех участков, которые отделены от нервных клеток, начинается восстановление, или регенерация, нервных волокон со стороны тел нейронов, из которых они прорастают в сохранившиеся соединительнотканые оболочки. Регенерация нервных волокон приводит к восстановлению проведения импульсов.

В отличие от нервных волокон через нейроны нервной системы нервные импульсы проводятся только в одном направлении - от рецептора к работающему органу. Это зависит от характера проведения нервного импульса через синапсы. В нервном волокне над пресинаптической мембраной есть множество мельчайших пузырьков ацетилхолина. При достижении биотоком пресинаптической мембраны часть этих пузырьков лопается, и ацетилхолин проходит через мельчайшие отверстия в пресинаптической мембране в синаптическую щель.
В постсинаптической мембране имеются участки, обладающие особым сродством к ацетилхолину, который вызывает временное появление пор в постсинаптической мембране, отчего она становится временно проницаемой для ионов. В результате в постсинаптической мембране возникает возбуждение и высоковольтный потенциал, который распространяется по следующему нейрону или по иннервируемому органу. Следовательно, передача возбуждения через синапсы происходит химическим путем посредством посредника, или медиатора, ацетилхолина, а проведение возбуждения по следующему нейрону снова осуществляется электрическим путем.

Действие ацетилхолина на проведение нервного импульса через синапс кратковременно; он быстро разрушается, гидролизуется ферментом холинэстеразой.

Так как химическая передача нервного импульса в синапсе происходит в течение доли мсек, то в каждом синапсе нервный импульс на это время задерживается.

В отличие от нервных волокон, в которых информация передается по принципу «все или ничего», т. е. дискретно, в синапсах информация передается по принципу «больше или меньше», т. е. градуально. Чем больше до некоторого предела образуется медиатора ацетилхолина, тем выше частота высоковольтных потенциалов в последующем нейроне. После этого предела возбуждение переходит в торможение. Таким образом, цифровая информация, передаваемая по нервным волокнам, переходит в синапсах в измерительную информацию. Измерительные электронные машины,

в которых имеются определенные соотношения между реально измеряемыми количествами и теми величинами, которые они представляют, называются аналоговыми, работающими по принципу «больше или меньше»; можно считать, что в синапсах происходит аналогичный процесс и совершается его переход в цифровой. Следовательно, нервная система функционирует по смешанному типу: в ней совершаются и цифровые и аналоговые процессы.

В результате эволюции нервной системы человека и других животных возникли сложные информационные сети, процессы в которых основаны на химических реакциях. Важнейшим элементом нервной системы являются специализированные клетки нейроны . Нейроны состоят из компактного тела клетки, содержащего ядро и другие органеллы. От этого тела отходит несколько разветвленных отростков. Большинство таких отростков, называемых дендритами , служат точками контакта для приема сигналов от других нейронов. Один отросток, как правило самый длинный, называется аксоном и передает сигналы на другие нейроны. Конец аксона может многократно ветвиться, и каждая из этих более мелких ветвей способна соединиться со следующим нейроном.

Во внешнем слое аксона находится сложная структура, образованная множеством молекул, выступающих в роли каналов, по которым могут поступать ионы — как внутрь, так и наружу клетки. Один конец этих молекул, отклоняясь, присоединяется к атому-мишени. После этого энергия других частей клетки используется на то, чтобы вытолкнуть этот атом за пределы клетки, тогда как процесс, действующий в обратном направлении, вводит внутрь клетки другую молекулу. Наибольшее значение имеет молекулярный насос, который выводит из клетки ионы натрия и вводит в нее ионы калия (натрий-калиевый насос).

Когда клетка находится в покое и не проводит нервных импульсов, натрий-калиевый насос перемещает ионы калия внутрь клетки и выводит ионы натрия наружу (представьте себе клетку, содержащую пресную воду и окруженную соленой водой). Из-за такого дисбаланса разность потенциалов на мембране аксона достигает 70 милливольт (приблизительно 5% от напряжения обычной батарейки АА).

Однако при изменении состояния клетки и стимуляции аксона электрическим импульсом равновесие на мембране нарушается, и натрий-калиевый насос на короткое время начинает работать в обратном направлении. Положительно заряженные ионы натрия проникают внутрь аксона, а ионы калия откачиваются наружу. На мгновение внутренняя среда аксона приобретает положительный заряд. При этом каналы натрий-калиевого насоса деформируются, блокируя дальнейший приток натрия, а ионы калия продолжают выходить наружу, и исходная разность потенциалов восстанавливается. Тем временем ионы натрия распространяются внутри аксона, изменяя мембрану в нижней части аксона. При этом состояние расположенных ниже насосов меняется, способствуя дальнейшему распространению импульса. Резкое изменение напряжения, вызванное стремительными перемещения ионов натрия и калия, называют потенциалом действия . При прохождении потенциала действия через определенную точку аксона, насосы включаются и восстанавливают состояние покоя.

Потенциал действия распространяется довольно медленно — не более доли дюйма за секунду. Для того чтобы увеличить скорость передачи импульса (поскольку, в конце концов, не годится, чтобы сигнал, посланный мозгом, достигал руки лишь через минуту), аксоны окружены оболочкой из миелина, препятствующей притоку и оттоку калия и натрия. Миелиновая оболочка не непрерывна — через определенные интервалы в ней есть разрывы, и нервный импульс перескакивает из одного «окна» в другое, за счет этого скорость передачи импульса возрастает.

Когда импульс достигает конца основной части тела аксона, его необходимо передать либо следующему нижележащему нейрону, либо, если речь идет о нейронах головного мозга, по многочисленным ответвлениям многим другим нейронам. Для такой передачи используется абсолютно иной процесс, нежели для передачи импульса вдоль аксона. Каждый нейрон отделен от своего соседа небольшой щелью, называемой синапсом . Потенциал действия не может перескочить через эту щель, поэтому нужно найти какой-то другой способ для передачи импульса следующему нейрону. В конце каждого отростка имеются крошечные мешочки, называющие (пресинаптическими ) пузырьками , в каждом из которых находятся особые соединения — нейромедиаторы . При поступлении потенциала действия из этих пузырьков высвобождаются молекулы нейромедиаторов, пересекающие синапс и присоединяющиеся к специфичным молекулярным рецепторам на мембране нижележащих нейронов. При присоединении нейромедиатора равновесие на мембране нейрона нарушается. Сейчас мы рассмотрим, возникает ли при таком нарушении равновесия новый потенциал действия (нейрофизиологи продолжают искать ответ на этот важный вопрос до сих пор).

После того как нейромедиаторы передадут нервный импульс от одного нейрона на следующий, они могут просто диффундировать, или подвергнуться химическому расщеплению, или вернуться обратно в свои пузырьки (этот процесс нескладно называется обратным захватом ). В конце XX века было сделано поразительное научное открытие — оказывается, лекарства, влияющие на выброс и обратный захват нейромедиаторов, могут коренным образом изменять психическое состояние человека. Прозак (Prozac*) и сходные с ним антидепрессанты блокируют обратный захват нейромедиатора серотонина. Складывается впечатление, что болезнь Паркинсона взаимосвязана с дефицитом нейромедиатора допамина в головном мозге. Исследователи, изучающие пограничные состояния в психиатрии, пытаются понять, как эти соединения влияют на человеческий рассудок.

По-прежнему нет ответа на фундаментальный вопрос о том, что же заставляет нейрон инициировать потенциал действия — выражаясь профессиональным языком нейрофизиологов, неясен механизм «запуска» нейрона. В этом отношении особенно интересны нейроны головного мозга, которые могут принимать нейромедиаторы, посланные тысячей соседей. Об обработке и интеграции этих импульсов почти ничего не известно, хотя над этой проблемой работают многие исследовательские группы. Нам известно лишь, что в нейроне осуществляется процесс интеграции поступающих импульсов и выносится решение, следует или нет инициировать потенциал действия и передавать импульс дальше. Этот фундаментальный процесс управляет функционированием всего головного мозга. Неудивительно, что эта величайшая загадка природы остается, по крайней мере сегодня, загадкой и для науки!

Что такое нервный импульс

Природа устроена очень просто.
Иначе ничего бы не работало.
Вот только простоты этой много.
Отсюда и все сложности.

Хотя сегодня о мозге и его строении известно очень много, однако на главный вопрос: «Как это работает?» пока ответа нет. Мозг представляется нам чёрным ящиком, на вход которого через рецепторы – органы чувств поступают «какие-то» сигналы, отображающие обстоятельства внешнего мира, а мозг в свою очередь, обрабатывает их, хранит и посылает «какие-то» управляющие команды к рабочим (исполнительным) органам.

Безответными остаются вопросы, как эта информация отображается, записывается (фиксируется) и извлекается.

Но, как бы то ни было, Наука не стоит на месте, и ученые значительно продвинулись в исследованиях мозга.

Есть идеи о том как функционируют нейроны, есть попытки построить логическую модель работы мозга. Правда, стоит коснуться вопросов передачи информации между нейронами и мы тут же натыкаемся на скромные уклончивые намеки на некие способы передачи возбуждения, химические и электрические способы передачи сигнала. Как бы вскользь при этом упоминается электрическая природа нервных импульсов.

Отсутствие конкретики дает простор для мистического и околонаучного фантазирования. Поэтому для понимания биофизических эффектов в мозге постоянно делаются попытки введения новых постулатов, например, о наличии в природе неких жизненных сил или торсионных полей.

Итак, современная модель работы мозга.
На сегодня доподлинно известно, что мозг состоит из большого количества отдельных логических элементов-нейронов. Каждый нейрон может возбуждаться сигналами, поступающими на его входы (аксоны ) с выходов (дендритов ) других нейронов, непосредственно связанных с ним. Возбудившись, этот нейрон пребывает в возбуждённом (!!! а не заряженном) состоянии и передает возбуждение через свои выходы на входы следующих логических элементов — нейронов.

Нейрон – специализированная нервная клетка с собственной оболочкой, набором внутриклеточных органелл и нейрофибриллами. От ее тела отходят длинный осевой отросток-аксон и короткие ветвящиеся дендриты. Дендриты получая нервные импульсы от других нейронов переводят их на аксон, по которому возбуждение распространяется без затухания до других нейронов или эффекторов - разного рода исполнительных органов (желез, мышц и т. п.). Словарь - Справочник Энтомолога Я бы еще выделил синапс. Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками.

Это практически все, что известно науке о работе нейрона. Все остальные знания сводятся к классификации нейронов по видам, размерам, количеству хвостиков и другим очень важным свойствам. Ну и естественно огромное количество выводов сделанных на основе по сути ошибочной идеи об электрической природе нервных импульсов.

А теперь давайте сделаем два предположения.
Первое – информация (возбуждение) от нейрона к нейрону передается в виде акустической (звуковой) волы.
Второе – нейрон представляет собой единичную колебательную систему (колебательный контур) и способен настраиваться на одну или несколько резонансных частот и находиться в автоколебательном состоянии, тем самым обеспечивая запоминание (хранение) информации.
Тогда нервный импульс есть не что иное как акустическая волна передаваемая по дендритам и аксонам нейрона. Само же тело нейрона представляет акустический колебательный контур или резонатор который в случае передачи информации способен осуществлять модуляцию проходящего через него нервного импульса, а в случае хранения информации находиться в автоколебательном состоянии на определенной частоте. Или, предположим, для выполнения функции записи, клетка меняет свои резонансные параметры и продолжает оставаться спокойной, а откликается только в случае обращения к ней.

Рассмотрим, как это все работает на примере РИСУНКА……

R1-Rn — рецепторы. Информация с рецепторов проходит через входы- дендриты, через тело нейрона на выход-аксон. Задача нервной системы донести информацию от рецептора до мозга. В простейшей схеме, изображенной на рисунке 1. это возможно только при условии, что сигналы индивидуально различимы. То есть выходной сигнал несет в себе информацию о конкретном рецепторе, с которого начался нервный импульс. Предположим, что в нашем случае, нервные импульсы различаются частотой.

А теперь намного усложним задачу. Предположим, что нервный импульс предается от рецептора через последовательность нейронов, например, два. см. рис.2.
В данном примере нервный импульс на выходе схемы должен содержать информацию не только о рецепторе, с которого он поступил, но и обо всех нейронах, через которые он предавался. Можно предположить, что каждый нейрон участвующий в передаче импульса привносит в него свою информационную составляющую. Например, модуляцию частотного сигнала, идущего от рецептора.

Все нервные импульсы неповторимы как штрих-коды на товарах в супермаркете, как отпечатки пальцев. Они уникальны и несут в себе информацию о факте раздражения рецептора и о пройденном пути.
В нервной системе человека ежесекундно проносятся миллионы нервных импульсов. Предложенная выше схема позволяет объяснить как совершенно разные импульсы могут передаваться по одним и тем же нервным каналам, как может работать служба рассылки импульсов.

Что нам дают подобные предположения.

  • Во-первых, акустическая идея дает нам маломальски правдоподобную, с точки зрения физики, теорию передачи информации внутри живого организма.
  • Во-вторых, объясняет способы хранения информации в мозге.
  • В-третьих, дает возможность объяснения непостижимых на сей момент времени жизненных феноменов, дает инструмент самопознания.
  • В-четвёртых, это новая парадигма в медицине, особенно в терапии.

Риторический вопрос, что является причиной болезни, патология органа или патология управляющего органом сигнала? Теоретически возможно и то и другое, причем в равной степени вероятности. Так что же лечит современная терапия (с хирургией понятнее)? И может быть плацебо и гомеопатия, над которыми вежливо посмеиваются «настоящие» доктора, есть не такая уж и глупость основанная на самовнушении пациента, а как раз и есть лечение путем корректировки системы управления. Лечения опосредованного, через внешние функции мозга, но что если возможно лечение путем . Например, вспомним современные стимуляторы деятельности сердца, работающие на батарейках. А если стимулировать работу сердца не электрическими импульсами по принципу « », а свойственным ему от природы управляющим (акустическим волновым) сигналом. Может тогда и операция не нужна, достаточно приложить акустический генератор к любой части тела или к любому нейрону и сигнал сам найдет свою цель.