Рецепты блюд. Психология. Коррекция фигуры

Переносное движение и его характеристики. Абсолютная, относительная и переносная скорости

СЛОЖНЫЕ ДВИЖЕНИЯ ТОЧКИ

§ 1. Абсолютное, относительное и переносное движения точки

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О 1 ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

1. Движение точки относительно системы координат Охуz (рис. 53) называется абсолютным.

2. Движение точки относительно подвижной системы координат O 1 ξηζ называется населенным.

3. Переносным движением точки называют движение той точки тела, связанного с подвижной системой координат О 1 ξηζ , относи­тельно неподвижной системы координат, с которой в данный момент совпадает рассматриваемая движущаяся точка.

Таким образом, переносное движение вызвано движением под­вижной системы координат по отношению к неподвижной. В приве­денном примере с колесом переносное движение точки обода колеса обусловлено поступательным движением системы координат О 1 ξηζ по отношению к неподвижной системе координат Аху.

Уравнения абсолютного движения точки получим, выразив коор­динаты точки х, у,z как функции времени:

х=х(t ), у = у(t ), z = z (t ).

Уравнения относительного движения точки имеют вид

ξ = ξ (t ), η = η (t), ζ = ζ (t ).

В параметрической форме уравнения (11.76) выражают уравне­ния абсолютной траектории, а уравнения (11.77) - соответственно уравнения относительной траектории.

Различают также абсолютную, переносную и от­носительную скорость и соответственно абсолютное, переносное и относительное ускорения точки. Абсо­лютную скорость обозначают υ a , относительную - υ r , переносную - υ е Соответственно ускорения обознача­ют: ω а , ω r и ω е .

Основной задачей кинематики сложного движения точки является установление зависимости между скоростями и ускорениями точки в двух системах координат: неподвижной и под­вижной.

Для доказательства теорем о сложении скоростей и ускоре­ний в сложном движении точки введем понятие о локальной или относительной производной.


Теорема о сложении скоростей

Теорема . При сложном (составном) движении точки ее абсолютная скорость υ a равна векторной сумме отно­сительной υ r и переносной υ е скоростей.

Пусть точка М совершает одновременные движения по отношению к неподвижной и подвижной системам координат (рис. 56). Обозначим угловую скорость поворота системы коор­динат Оξηζ через ω . Положение точки М определяется радиусом-вектором r .

Установим соотношение между скоростями точки М по отноше­нию к двум системам координат - неподвижной и подвижной. На основании доказанной в предыдущем параграфе теоремы

Из кинематики точки известно, что первая производная от ра­диуса-вектора движущейся точки по времени выражает скорость этой точки. Поэтому = r = υ а - абсолютная скорость, =υ r - относительная скорость,

а ω xr = υ е - переносная ско­рость точки М. Следовательно,

υ а = υ r + υ е

Формула (11.79) выражает правило параллелограмма скоростей. Модуль абсолютной скорости найдем по теореме косинусов:



В некоторых задачах кинематики требуется определить относи­тельную скорость υ r . Из (11.79) следует

υ r = υ а +(- υ е) .

Таким образом, чтобы построить вектор относительной скорости, нужно геометрически сложить абсолютную скорость с век­тором, равным по абсолютной величине, но противоположно направ­ленным переносной скорости.

§ 2. 5. Движение: абсолютное, относительное, переносное. Теорема Эйлера. Угловая скорость.

Дополнительно к неподвижным осям Oxyz (система S) введем в рассмотрение некоторое подвижное твердое тело и неизменно связанную с ним систему прямоугольных осей координат O’x’y’z’ (система S’).

Движение точки относительно подвижной системы осей S’ называется относительным движением.

Движение точки относительно неподвижных осей S называется абсолютным движением.

Переносным движением точки за интервал времени (t,t+Dt) называется то движение по отношению к осям S, которая эта точка имела бы, если бы в момент времени t и на интервал (t,t+Dt) она была неизменно связана с подвижной системой осей и, следовательно, перемещалась бы вместе с этой системой.

Траектория, скорость и ускорение называются абсолютными, относительными или переносными, смотря по тому, относятся ли они к движению абсолютному, относительному или переносному.

Теорема Эйлера: Если относительно системы S система S" имеет одну неподвижную точку, то перемещение S" из одного произвольного положения в любое другое может быть совершено одним поворотом на определенный угол относительно оси, проходящей через эту неподвижную точку.

Для доказательства достаточно показать возможность перевода одним поворотом дуги, например, .

Проведем два экватора: a, перпендикулярный середине x 1 "x 2 ", и b, перпендикулярный середине z 1 "z 2 ". Получим две точки пересечения этих экваторов – с и d.

Dx 1 "z 1 "d = Dz 2 "x 2 "d

(так как x 1 "z 1 " = x 2 "z 2 ", а x 1 "d = x 2 "d в силу того, что точка d лежит на экваторе, перпендикулярном середине x 1 "x 2 ",

z 1 "d = z 2 "d по той же причине)

Таким образом, Ðx 1 "dz 1 " = Ðz 2 "dx 2 " и угол между дугами x 1 "d и x 2 "d равен углу между дугами z 1 "d и z 2 "d, то есть нужно повернуть x 1 "z 1 " относительно оси dO"c на угол x 1 "dz 1 " (или равный ему z 2 "dx 2 ")

Теорема Эйлера справедлива и для конечных поворотов и для бесконечно малых. Хотя последовательность бесконечно малых поворотов может быть любой – результат будет тем же, конечные же повороты не коммутируют. Это тем более справедливо для бесконечно малых поворотов, чем ближе дуги, описываемые какой-либо точкой, к хордам, соединяющим концы дуг.

При рассмотрении задач о движении тела с одной закрепленной точкой, которые имеют большое практическое значение, для определения (фиксации) положения системы S" относительно S широко используются три угла Эйлера.

Пересечение плоскостей O"xy и O"x"y" дает прямую, которую называют линией узлов (орт линии узлов - ). Первый угол Эйлера j - угол между осью O"x и линией узлов. Второй угол y - угол между линией узлов и осью O"x". Третий угол q - угол между осями O"z и O"z".

Эти три угла однозначно определяют положение системы S" относительно S

Таким образом, при бесконечно малом повороте системы S" относительно S на углы dj,dy,dq (некоторые из них могут быть равными нулю) их можно заменить одним поворотом на угол dc вокруг некоторой оси, проходящей через точку O".

Введем в рассмотрение вектор бесконечно малого поворота:

(здесь направлен по оси вращения по правилу правого винта)

Величина и направление вектора dc при сложном движении могут изменяться. Ось называется осью мгновенного вращения. Посмотрим, что происходит с ортами системы S" при ее повороте на угол

§ 2. 6. Сложное движение точки.

продифференцировав это соотношение по времени, получим:

Абсолютная скорость точки (относительно системы S),

Скорость начала координат S" относительно S,

Не является скоростью точки М относительно системы S", так как орты этой системы являются функциями времени.

,

используя формулы (2.5.1) будем иметь:

Последнее слагаемое означает, что производная берется при неизменных ортах системы O’x’y’z’, .

Теперь для скоростей имеем:

здесь v h -переносная, v – абсолютная, v’ – относительная скорость точки, то есть получена связь этих скоростей. Переносная скорость состоит из двух слагаемых: первое присутствует в том случае, если подвижная система отсчета движется поступательно, второе появляется в том случае, если подвижная система отсчета совершает вращение.

Для получения связи ускорений продифференцируем по времени соотношение для скоростей:

Абсолютное ускорение, - ускорение начала координат S’ относительно S.

Движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух СО.

Обычно выбирают одну из СО за базовую («абсолютную»), другую называют «подвижной» и вводят следующие термины:

  • абсолютное движение - это движение точки/тела в базовой СО.
  • относительное движение - это движение точки/тела относительно подвижной системы отсчёта.
  • переносное движение - это движение второй СО относительно первой.

Также вводятся понятия соответствующих скоростей и ускорений . Например, переносная скорость - это скорость точки, обусловленная движением подвижной системы отсчёта относительно абсолютной. Другими словами, это скорость точки подвижной системы отсчёта, в данный момент времени совпадающей с материальной точкой.

Оказывается, что при получении связи ускорений в разных системах отсчёта возникает необходимость ввести ещё одно ускорение, обусловленное вращением подвижной системы отсчёта:

В дальнейшем рассмотрении, базовая СО предполагается инерциальной , а на подвижную никаких ограничений не накладывается.

Классическая механика

Кинематика сложного движения точки

Скорость

.

Основные задачи кинематики сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, то есть

.

Ускорение

Связь ускорений можно найти путём дифференцирования связи для скоростей, не забывая, что координатные векторы подвижной системы координат также могут зависеть от времени.

Абсолютное ускорение точки равно геометрической сумме трёх ускорений - относительного, переносного и кориолисова , то есть

.

Кинематика сложного движения тела

Для твёрдого тела, когда все составные (то есть относительные и переносные) движения являются поступательными , абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений.

Рассчитать взаимосвязь скоростей разных точек твёрдого тела в разных системах отсчёта можно с помощью комбинирования формулы сложения скоростей и формулы Эйлера для связи скоростей точек твёрдого тела . Связь ускорений находится простым дифференцированием полученного векторного равенства по времени.

Динамика сложного движения точки

При рассмотрении движения в неинерциальной СО нарушаются первые 2 закона Ньютона. Чтобы обеспечить формальное их выполнение, обычно вводятся дополнительные, фиктивные (не существующие на самом деле), силы инерции: центробежная сила и сила Кориолиса . Выражения для этих сил получаются из связи ускорений (предыдущий раздел).

Релятивистская механика

Скорость

При скоростях, близких к скорости света, преобразования Галилея не являются точно инвариантными и классическая формула сложения скоростей перестаёт выполняться. Вместо этого, инвариантными являются преобразования Лоренца, а связь скоростей в двух инерциальных СО получается следующей:

в предположении, что скорость направлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Однако вводится величина - быстрота - которая аддитивна при переходе от одной СО к другой.

Движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух СО.

Обычно выбирают одну из СО за базовую («абсолютную»), другую называют «подвижной» и вводят следующие термины:

  • абсолютное движение - это движение точки/тела в базовой СО.
  • относительное движение - это движение точки/тела относительно подвижной системы отсчёта.
  • переносное движение - это движение второй СО относительно первой.

Также вводятся понятия соответствующих скоростей и ускорений . Например, переносная скорость - это скорость точки, обусловленная движением подвижной системы отсчёта относительно абсолютной. Другими словами, это скорость точки подвижной системы отсчёта, в данный момент времени совпадающей с материальной точкой.

Оказывается, что при получении связи ускорений в разных системах отсчёта возникает необходимость ввести ещё одно ускорение, обусловленное вращением подвижной системы отсчёта:

В дальнейшем рассмотрении, базовая СО предполагается инерциальной , а на подвижную никаких ограничений не накладывается.

Классическая механика

Кинематика сложного движения точки

Скорость

.

Основные задачи кинематики сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, то есть

.

Ускорение

Связь ускорений можно найти путём дифференцирования связи для скоростей, не забывая, что координатные векторы подвижной системы координат также могут зависеть от времени.

Абсолютное ускорение точки равно геометрической сумме трёх ускорений - относительного, переносного и кориолисова , то есть

.

Кинематика сложного движения тела

Для твёрдого тела, когда все составные (то есть относительные и переносные) движения являются поступательными , абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений.

Рассчитать взаимосвязь скоростей разных точек твёрдого тела в разных системах отсчёта можно с помощью комбинирования формулы сложения скоростей и формулы Эйлера для связи скоростей точек твёрдого тела . Связь ускорений находится простым дифференцированием полученного векторного равенства по времени.

Динамика сложного движения точки

При рассмотрении движения в неинерциальной СО нарушаются первые 2 закона Ньютона. Чтобы обеспечить формальное их выполнение, обычно вводятся дополнительные, фиктивные (не существующие на самом деле), силы инерции: центробежная сила и сила Кориолиса . Выражения для этих сил получаются из связи ускорений (предыдущий раздел).

Релятивистская механика

Скорость

При скоростях, близких к скорости света, преобразования Галилея не являются точно инвариантными и классическая формула сложения скоростей перестаёт выполняться. Вместо этого, инвариантными являются преобразования Лоренца, а связь скоростей в двух инерциальных СО получается следующей:

в предположении, что скорость направлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Литература

  • Н. Г. Четаев . «Теоретическая механика». М.: Наука. 1987. 368 с.

До сих пор мы изучали движение точки или тела по отношению к одной заданной системе отсчета. Однако в ряде случаев при решении задач механики оказывается целесообразным (а иногда и необходимым) рассматривать движение точки (или тела) одновременно по отношению к двум системам отсчета, из которых одна считается основной или условно неподвижной, а другая определенным образом движется по отношению к первой.

Движение, совершаемое при этом точкой (или телом), называют составным или сложным. Например, шар, катящийся по палубе движущегося парохода, можно считать совершающим по отношению к берегу сложное движение, состоящее из качения по отношению к палубе (подвижная система отсчета), и движение вместе с палубой парохода по отношению к берегу (неподвижная система отсчета). Таким путем сложное движение шара разлагается на два более простых и более легко исследуемых. Возможность разложить путем введения дополнительной (подвижной) системы отсчета более сложное движение точки или тела на более простые широко используется при кинематических расчетах и определяет практическую ценность теории сложного движения, рассматриваемой в этой и следующей главах. Кроме того, результаты этой теории используются в динамике для изучения относительного равновесия и относительного движения тел под действием сил.

Рассмотрим точку М, движущуюся по отношению к подвижной системе отсчета , которая в свою очередь как-то движется относительно другой системы отсчета которую называем основной или условно неподвижной (рис. 182). Каждая из этих систем отсчета связана, конечно, с определенным телом, на чертеже не показанным. Введем следующие определения.

1. Движение, совершаемое точкой М по отношению к подвижной системе отсчета (к осям ), называется относительным движением (такое движение будет видеть наблюдатель, связанный с этими осями и перемещающийся вместе с ними).

Траектория АВ, описываемая точкой в относительном движении, называется относительной траекторией. Скорость точки М по отношению к осям Охуz называется относительной скоростью (обозначается ), а ускорение - относительным ускорением (обозначается ). Из определения следует, что при вычислении можно движение осей во внимание не принимать (рассматривать их как неподвижные).

2. Движение, совершаемое подвижной системой отсчета Охуz (и всеми неизменно связанными с нею точками пространства) по отношению к неподвижной системе является для точки М переносным движением.

Скорость той неизменно связанной с подвижными осями Охуz точки , с которой в данный момент времени совпадает движущаяся точка М, называется переносной скоростью точки М в этот момент (обозначается ипер), а ускорение этой точки - переносным ускорением точки М (обозначается арер). Таким образом,

Если представить себе, что относительное движение точки происходит по поверхности (или внутри) твердого тела, с которым жестко связаны подвижные оси Охуz, то переносной скоростью (или ускорением) точки М в данный момент времени будет скорость (или ускорение) той точки тела, с которой в этот момент совпадает точка М.

3. Движение, совершаемое точкой по отношению к неподвижной системе отсчета называется абсолютным или сложным. Траектория CD этого движения называется абсолютной траекторией, скорость абсолютной скоростью (обозначается ) и ускорение - абсолютным ускорением (обозначается ).

В приведенном выше примере движение шара относительно палубы парохода будет относительным, а скорость - относительной скоростью шара; движение парохода по отношению к берегу будет для шара переносным движением, а скорость той точки палубы, которой в данный момент времени касается шар, будет в этот момент его переносной скоростью; наконец, движение шара по отношению к берегу будет его абсолютным движением, а скорость - абсолютной скоростью шара.

Для решения соответствующих задач кинематики необходимо установить зависимости между относительными, переносными и абсолютными скоростями и ускорениями точки, к чему мы и перейдем.